Role of Fas and RANKL Signaling in Peripheral Immune Tolerance
نویسندگان
چکیده
The death receptor, Fas, has been well-characterized and is a critical factor in apoptosis in immune cells. Fas also has an important role in maintaining immune tolerance as demonstrated in the autoimmune-prone MRL/lpr mouse strain which carries a defect in Fas-mediated apoptosis of T cells. However, the role of Fas-independent apoptosis remains to be characterized in autoimmune diseases. In dendritic cells (DCs), binding of receptor activator of nuclear factor-κB ligand (RANKL) to RANK perpetuates the survival of mature DCs. However, cross-talk between the RANK/RANKL pathway and Fas-mediated signaling during the function or activation of DCs has not been wellstudied. This short communication review describes a mechanism involving interactions between activated DCs and T cells in the autoimmune response of MRL/lpr mice and a novel Fas-independent apoptosis pathway in T cells that maintains peripheral tolerance, and controls autoimmunity in MRL/lpr mice.
منابع مشابه
Crosstalk between RANKL and Fas signaling in dendritic cells controls immune tolerance.
Although receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signaling has been shown to prolong the survival of mature dendritic cells (DCs), the association of RANKL pathway with Fas-mediated apoptosis is obscure. Here, we found that bone marrow-derived DCs (BMDCs) from the Fas-deficient strain MRL/lpr mice, could survive much longer than normal DCs. The expressions of Bcl-x and B...
متن کاملFas-Independent T-Cell Apoptosis by Dendritic Cells Controls Autoimmune Arthritis in MRL/lpr Mice
BACKGROUND Although autoimmunity in MRL/lpr mice occurs due to a defect in Fas-mediated cell death of T cells, the role of Fas-independent apoptosis in pathogenesis has rarely been investigated. We have recently reported that receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated dendritic cells (DCs) play a key role in the pathogenesis of rheumatoid arthritis (RA) in MRL/lpr mic...
متن کاملDual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediate...
متن کاملOral tolerance for delayed type hypersensitivity contribution of local and peripheral mechanisms
Oral tolerance is a physiological immune mechanism, which controls the outcome of deleterious hypersensitivity reactions to environmental antigens absorbed through the gastrointestinal tract, and maintains homeostasis. Using a mouse model of oral tolerance of delayed type hypersensitivity to contact allergens, i.e. haptens, we have examined the mechanisms involved in the induction of oral toler...
متن کاملRegulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction.
The mucosal immune system is uniquely equipped to discriminate between potentially invasive pathogens and innocuous food proteins. While the mechanisms responsible for induction of mucosal immunity vs tolerance are not yet fully delineated, recent studies have highlighted mucosal dendritic cells (DC) as being important in determining the fate of orally administered Ag. To further investigate th...
متن کامل